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Experiments are reported on the dynamics of a bed of particles sheared by a viscous
Couette flow in an annular channel, with emphasis on the distributions of particle
velocities, durations and lengths of the small saltation flights, and surface density of
the moving particles. The velocity distributions are shown to decay approximately
exponentially, with mean value, Up , equal to 0.1 γ d , where γ is the shear rate and
d is the particle diameter. The duration of the flights does not depend on the shear
rate, and is equal to 15 times the settling time d/VS , where VS is the Stokes settling
velocity. Starting from an initially loosely packed bed, the surface density of the
moving particles, Np , was observed to decrease slowly over several days, unlike their
velocity which remains constant with time. This decay is related to the increase of
the threshold shear rate for particle motion, and corresponds to rearrangement of
the particles near the bed surface (armouring). When the stationary state is reached,
Np depends linearly on the shear rate, so that the particle flow rate, Qp =NpUp ,
is a quadratic function of the shear rate. Two theoretical models are proposed to
account for these observations. In the first one, the erosion and deposition rates
are modelled using the two hydrodynamic time scales: the inverse shear rate γ −1

for the erosion rate, and the settling time d/VS for the deposition rate. This model
accounts for the linear dependence of Np on the shear rate. The second model was
developed to capture the slow decrease of Np , by considering the trapping of moving
particles into troughs of the bed. This trapping model does recover the main features
observed experimentally, although the characteristic time for the decrease of Np still
remains too short. Our observations are, finally, compared to existing numerical and
experimental studies on turbulent flows.

1. Introduction
Erosion and deposition of particles by a shear flow are phenomena involved in

numerous industrial processes, such as oil extraction, and in the natural environment,
such as sediment transport by water, thus spanning a wide range of particle Reynolds
numbers. Although much work has been devoted to the subject for more than a
century, no general theory exists. In particular, as noted by the ASCE Task Committee
on Flow and Transport over Dunes (2002), the problem of predicting the suspended-
load and bed-load flow rates, which are the main practical quantities of interest, is
not satisfactorily solved yet for turbulent flows. The presumably simpler situation of
viscous flows is not understood either, even four decades after Bagnold’s incitement
to study ‘laminar flows’ (Bagnold 1966).

From the experimental point of view, the existing data are mostly for turbulent
flows and are widely scattered, even for nearly uniform sediment size. This is true
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for the threshold for particle motion as a function of the particle Reynolds number
(Buffington & Montgomery 1997), i.e. the well-known Shields curve, as well as for
the particle flow rate (Bagnold 1966; Wiberg & Smith 1989). The observed scatter
in these laws, as often stated, is certainly due to the difficulty of controlling and
determining the flow and particle parameters, such as the turbulent flow near the bed,
the size, shape and roughness of the particles. To some extent the scatter is also due
to the difficulty of unambiguously defining the quantities of interest. Less studied are
the particle flow variations that arise from the long-term evolution of the bed at the
particle scale, in particular bed armouring. Such long-term evolution is still poorly
understood and is in particular believed to concern mainly beds of non-uniform sized
particles (Chin, Melville & Raudkivi 1994). The lack of understanding is at least partly
due to the technical difficulty associated with traditional flume experiments, which are
always limited in length, and as a consequence the basic physical phenomena involved
have received little attention. Notwithstanding the intrinsic interest of understanding
such long-term evolution, it should be noted that even if the intent is to only study
the stationary situation, one needs to know the time scales that are necessary to reach
this state.

From the modelling point of view, the pioneering papers by Einstein (1950) and
Bagnold (1956) in the field of hydraulics, and, in the context of viscous resuspension,
that of Leighton & Acrivos (1986), have yielded the basic concepts to model the
bed-load flow rate. The semi-empirical laws they proposed have been improved
since, mainly from investigations of the saltating motion of individual particles
(Bagnold 1973; van Rijn 1984; Engelund & Fredsoe 1976; Wiberg & Smith 1989;
Sekine & Kikkawa 1992) and also from experiments (Fernandez Luque & van Beek
1976). These laws are widely used in hydraulic engineering for transport predictions
(Raudkivi 1998), and also to account for ripple and dune formation under steady
and oscillating flows (Richards 1980; Blondeaux 1990), tidal currents (Blondeaux
2001), or viscous flows (Charru & Mouilleron-Arnould 2002). However, these laws
are not firmly rooted in undisputable hydrodynamic models, and they consequently
fail in some situations. In particular, it is recognized that the laws based on Bagnold’s
original concepts are not accurate for bottom shear stresses close to the threshold of
particle motion. Moreover, the above models ignore the problem of bed compaction,
and to our knowledge there are again no models predicting the time scales of this
phenomenon.

Not only are the bed-load flow-rate laws not clearly determined and understood
yet, but they also concern an integrated quantity: the bed load, i.e. particle flow
rate, is the product of the mean velocity of the particles and their surface density.
This surface density in turn results from the two opposite processes of erosion and
deposition. Fundamental progress in the field requires these quantities (i.e. the mean
particle velocity and surface density, as well as the erosion and deposition rates) to
be determined, which in turn requires the description of the motion of individual
particles. Such a description has already been given by Meland & Normann (1966)
and Francis (1973) for a single particle on a bed of fixed particles. Fernandez Luque &
van Beek (1976) report the mean velocity, saltation lengths and surface density of
moving particles for water flows. However, little is known on the distributions of
these quantities, and viscous flows have not been investigated yet.

In the light of the complexities and the current level of understanding, this paper
investigates the simple and prototypical situation of a plane horizontal bed of particles
sheared by a viscous Couette flow U (y), with no ripple formation. The first objective is
to re-examine the threshold for particle motion, and above this threshold, to determine
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Figure 1. Sketch of the annular channel. R = 200mm, �R = 40mm, H = 16 mm, hf ≈ 7 mm.

the velocity distributions and surface density of the moving particles. This is done by
taking into account the long-term evolution (up to five days) of a loosely packed bed
towards a saturated ‘armoured’ bed. The second objective is to propose two models
to account for the underlying physical processes: a ‘dynamic’ model for the erosion
and deposition processes, and a ‘kinematic’ model for the long-term evolution of the
particle flow rate.

The paper is organized as follows: The experimental set-up based on an annular
geometry is described in § 2 and the results are given in § 3. The two models are
developed in § 4. The final section is devoted to a discussion of the results in connection
with previous studies.

2. Experimental set-up
Experiments have been performed in an annular Plexiglas channel, of mean radius

R = 200 mm (figure 1). The advantage of a closed channel is that it avoids the problems
associated with the supply of fluid and particles to ensure stationary and homogeneous
flow conditions. Moreover, long-term evolution can be studied, in contrast with
open-ended channels. The width and depth of the channel are �R = 40 mm
and H = 16 mm, respectively. The rotation of the upper plate, whose velocity at
the mean radius is denoted Uw , drags the fluid, which in turn drags the particle
bed. For the results presented here, the fluid is silicon oil (density ρf =950 kg m−3,
viscosity µ = 19.5 × 10−3 Pa s at 20 ◦C), with a typical thickness hf ≈ 7 mm. Particles

are spherical acrylic beads (density ρp = 1180 kg m−3). They have been sieved in order
to reduce the size dispersion: histogramms obtained from a granulometer gave a mean
diameter d = 0.58 mm with a standard deviation of about 0.1 mm. A fixed fraction of
them (5%) were dyed for easier identification as discussed later in § 3.3.
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The main fluid flow is azimuthal and close to plane Couette flow, Uf = γy, where
γ =Uw/hf is the shear rate. However, there is also a small secondary flow due
to centrifugal forces, directed outwards in the upper half of the fluid layer and
inwards in the lower half. The radial velocity Wf can be estimated by balancing the
radial pressure gradient due to centrifugal forces, of order ρf U 2

w/R, with the viscous
resistance, of order µWf /h2

f , giving Wf /Uw ∼ Re hf /R, where

Re =
ρf Uwhf

µ
(1)

is the channel Reynolds number. This small radial velocity induces a radial bottom
shear stress, of order µWf /hf , which slowly drags the particles to the inner wall.
From the above estimates, the ratio of the radial to the main azimuthal shear stress
can be written as

τr

τa

= c Re
hf

R
, (2)

where c is a constant depending on the aspect ratio of the channel. The above
estimates have been confirmed by numerical simulations of the flow in an annular
channel with smooth walls (Mouilleron-Arnould 2002). These simulations show that
for Re < 200, (i) the azimuthal velocity Uf departs from Couette flow by less than
10% in the middle half of the width of the channel, and (ii) the constant c in (2) is
0.06 for the aspect ratio �R/hf = 40/7, and varies very little with the latter. Thus,
for the maximum channel Reynolds number examined (Remax = 43), the maximum
radial velocity Wf is less than 3% of the upper plate velocity, and the predicted
radial bottom shear stress is 9% of the azimuthal component. The radial bottom
shear stress is responsible for a slow drift of the particles towards the inner wall of
the channel, eventually resulting in a radial inclination of the bed surface. For the
results presented here, the maximum difference in the bed (or fluid) thickness across
the width of the channel remained less than 1 mm, i.e. about two particle diameters.

The particle motion depends on the relative magnitude of the hydrodynamic force
acting on it, of order µγd2, and its apparent weight, of order (ρp − ρf )gd3. The ratio
of these two forces defines the Shields number,

θ =
µγ

(ρp − ρf )gd
. (3)

The particle motion also depends on the relative magnitude of inertial and viscous
stresses, i.e. on the particle Reynolds number,

Rep =
ρf γ d2

µ
. (4)

For the experiments to be presented, the dimensionless parameters ranged from zero
up to Re = 43, θ =0.24 and Rep = 0.30. Above these upper bounds the secondary
flow due to centrifugal effects is no longer negligible.

The bed height along the mean radius R was measured using an ultrasonic probe,
mounted flush with the lower surface of the upper plate as shown in figure 1. The
diameter of the ultrasonic beam is about 3 mm. The bed surface is visualized from
above with an interlaced colour CCD camera, with resolution 768 × 576 pixels, and
a sampling frequency of 25 Hz. The field of view was 13 × 10 mm2 centred on the
mean radius of the channel and aligned with the longitudinal direction. A particle
diameter therefore corresponds to 33 pixels in the longitudinal direction. Due to the
high concentration of the moving particles and the weak contrast between the moving
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Figure 2. Bed thickness as measured by the ultrasonic probe, at the onset of motion and 107
hours later, for θ = 0.17 (γ = 11 s−1).

particles and the underlying bed, the use of an automatic tracking procedure was not
feasible. Thus, the particles were manually tracked from frame to frame. Their centre
was determined with the aid of the image-processing software Optimas c©, with an
accuracy of one pixel corresponding to about 0.03d .

Due to the near-matching of the optical indexes of the fluid and the particles,
dyed particles located three or four particle diameters below the bed surface could
be identified, allowing the thickness of the moving layer to be estimated. Close to the
threshold of particle motion, θ = 0.04, only a few particles move at the bed surface.
For the highest Shields number studied, θ = 0.24, the moving layer is about two
diameters thick, but small displacements are visible down to four particles diameters
below the bed surface. Of course the vertical positions of the particles cannot be
obtained from the upper view of the bed. A detailed study of the moving layer and
of the particle and fluid velocities within this moving layer has been undertaken
(Mouilleron-Arnould 2002) and will be published elsewhere.

3. Experimental results
In this experimental section we first address the temporal bed-thickness evolution

of an initially loosely packed bed under steady shear conditions (§ 3.1). We then
turn to the motion of individual particles (§ 3.2), followed by the surface density of
the moving particles (§ 3.3). Finally, on the basis of these measurements we give the
Shields-number dependence of the flow rate on a compacted bed (§ 3.4).

3.1. Bed-thickness evolution

The first step preceding any measurement was to prepare a flat bed, achieved by
rotating the upper plate sufficiently fast in order to resuspend the whole bed and
then quickly stopping the upper plate. The particles settle, and form a loosely packed
flat bed after a few minutes. It should be noted that the Stokes settling velocity of
a particle is VS = (ρp − ρf )gd2/18µ ≈ 2.2 mm s−1 and the characteristic settling time
is d/VS ≈ 0.27 s. A typical profile of the initial bed surface (t =0), as measured by
the ultrasonic probe, is shown on the upper trace of figure 2. It can be seen that the
residual fluctuations of the bed surface or thickness are about one particle diameter,
as expected.

Particles begin to move for Shields numbers above a threshold, defined as θt,0, of
0.04. For a constant Shields number above this threshold, the mean bed thickness
is observed to decrease slowly with time. This is illustrated in figure 2, which shows
the bed thickness at the initial time (h ≈ 9.8mm), and after four days (h ≈ 8.8 mm).
This bed subsidence, of about two particle diameters, is expected to be caused by
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Figure 3. (a) Temporal evolution of the mean bed thickness h/d , for θ = 0.14 (∗) and 0.17
(�) (γ = 9 and 11 s−1, respectively); (b) temporal evolution (log scale) of h0/h where h0 is the
initial mean bed thickness.

two phenomena: first, the local rearrangements of the particles which lead to an
increase of the compactness, and second, the slow drift of the particles towards the
inner wall due to the centrifugal secondary flow. The relative importance of these
two phenomena can be determined by measuring the radial profile of the bed. Such
measurements have been performed with the help of a cathetometer (the ultrasonic
probe could not be translated radially), but the accuracy was not sufficient for a firm
conclusion to be drawn on this basis. However, as will be seen, all other evidence
points towards an increase in compactness.

The temporal evolution of the mean bed thickness is shown in figure 3(a) for two
Shields numbers. For the higher one (θ = 0.17) the thickness variation is faster, and
it can be seen that the two temporal evolutions collapse when plotted versus the
dimensionless time γ t . The thickness varies strongly − by two particle diameters −
until γ t ≈ 2 × 106 corresponding to several hours. For later times, the variation is
much weaker − about a tenth of a diameter − and dominated by fluctuations due
to measurements errors. Figure 3(b) displays the same temporal evolution in terms of
the inverse of the bed thickness, h0/h, where h0 is the mean bed thickness at the onset
of motion. It can be seen that for dimensionless times γ t greater than 104 (i.e. after
about 15 minutes), this ratio increases logarithmically with time. Such a logarithmic
evolution is similar to that observed for the compaction of granular material shaken
vertically, for which a phenomenological theory has been proposed (Kadanoff 1999),
which is a first indication that the observed bed subsidence is due to compaction.

It should be noted that the subsidence of the bed surface, of about one millimetre,
is not negligible compared to the fluid thickness, hf ≈ 7 mm. Thus, in order to keep
the shear rate constant, the upper plate velocity has to be gradually increased, by
about 15% during the course of the run. It should also be noted that, as can be seen
in figure 2, no ripple formation was observed; indeed, ripples were observed to grow
with water or low-viscosity oil, but they disappeared for a viscosity of about ten times
that of water. This will be reported and discussed in a forthcoming paper.

3.2. Motion of individual particles

We present in this section a study of the motion of the individual particles, specifically
their trajectories and velocities. These quantities have been evaluated for Shields
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Figure 4. Four particle trajectories at nominal time γ t = 103 for θ = 0.24 (γ =19 s−1). The
flow is from left to right, and the time interval between two successive positions is 0.4 s.

numbers up to θ =0.24 and, in order to evaluate possible long transients effects, at
nominal times γ t =103, 104, 105 and 106, the latter time corresponding to two days.

Figure 4 displays four typical particle trajectories at the surface of the bed for
θ =0.24, obtained from an image sequence of one minute taken 15 minutes after the
beginning of the run. The motion appears irregular due to the bumps encountered
by the moving particles over the other moving or fixed particles. For the shear-stress
range studied (one to six times the threshold θt,0 = 0.04), the particles mainly roll over
each other, with small ‘flights’ at a height of about one particle diameter above the
bed. A particle may stop for a while in a small trough, and then start again, generally
due to the impact of another particle or possibly due to the rearrangement of the
particles around it. The trajectories reported in figure 4 correspond to ‘fast’ particles,
i.e. particles crossing a significant part of the field of view during the image sequence.
Many other particles were observed to experience small displacements, again likely
to be related to the local re-arrangement of the microstructure of the bed.

Once the successive positions of the moving particles are recorded, their quasi-
instantaneous velocity can be computed. Considering the particle positions at time
intervals of 0.40 s (only one frame in ten was retained for velocity computations)
and the camera resolution corresponding to 0.017 mm, the resolution of the velocity
measurements is 0.042 mm s−1. In terms of the characteristic fluid velocity γ d at a
distance d above the bed, this cut-off corresponds to 0.006 γ d for θ = 0.15 and to
0.004 γ d for θ =0.24. Figure 5 displays the temporal evolution of the longitudinal
velocity component U of eight particles, tracked from their entrance to their exit of
the field of view, for the same flow conditions as in figure 4. It can be seen that
velocities exhibit large fluctuations between U ≈ 0 and U ≈ 0.4 γ d . Velocities higher
than 0.2 γ d generally occur as isolated peaks. The fact that the velocity may become
zero means that the particle stops and then starts again. The mean longitudinal
particle velocity, defined as Up , is about 0.10 γ d , or, in terms of the Stokes settling
velocity, about 0.43 VS .
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Figure 5. Time variation of the velocity of eight particles, at nominal time γ t = 103 for
θ = 0.24 (γ = 19 s−1); each star corresponds to the beginning of the tracking of a new particle
(the time scale has only a relative value).

In order to determine the long-term evolution of particle velocity and flights,
just considering their mean value may be insufficient. More information can be
gained from their distribution, i.e. their probability density functions (PDFs). Such
PDFs have been determined for the particle velocities, for which several hundred
measurements were available. For the duration and length of the flights, the number
of measurements was at least one order of magnitude lower, which was not enough
for obtaining converged PDFs, but enough for coarse histograms and estimates of
the most probable values.

The velocity PDFs can be obtained by two different methods. The first or ‘Eulerian’
method consists in identifying all the moving particles between two successive frames,
and then averaging over a suitable number of frames, until convergence is achieved.
When the number of moving particles was too high (greater than about one hundred),
only dyed particles were considered. This method requires a precise definition of
a ‘moving particle’, taken as one with velocity greater than the cut-off velocity
discussed earlier. The second or ‘Lagrangian’ method for determining the velocity
PDFs considers the successive velocities of the same particles as they cross the
field of the camera, at time intervals of 0.4 s, and then averaging over a suitable
number of particles. Among these velocities, 10% to 20% are zero (i.e. less than
the cut-off 0.042 mm s−1) and have been removed for the PDFs (they correspond to
particles stopping). Figure 6 compares the PDFs obtained by the two methods, for
the same flow conditions as in figure 4. The PDF obtained with the Eulerian method
here corresponds to an average over 85 frames, each frame showing 5 to 12 dyed
moving particles. The PDF obtained with the Lagrangian method corresponds to 227
velocities from 8 tracked particles. It can be seen that both methods lead essentially
to the same PDF. In particular, the mean velocities are very close, 0.090 γ d and
0.087 γ d for the Eulerian and Lagrangian methods, respectively. This implies that
no bias was introduced by selecting a sample of moving particles in the Lagrangian
method. Since the Lagrangian method was more time efficient it was used for the
following results and figures, with about 250 to 700 velocities measured by tracking 6
to 12 particles. Physically both methods reveals that the PDF decreases monotically
to zero, approximately obeying the following exponential law:

P (U ) =
1

Up

e−U/Up with
Up

γ d
= 0.10. (5)
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Figure 7. Histograms of (a) length and (b) duration of the particle flights, at nominal time
γ t = 103 for θ =0.24 (γ = 19 s−1).

The flight lengths L and flights durations τ of the particles have been determined by
tracking the particles and their stop and start times. As mentioned before, the number
of measurements was not enough for obtaining converged PDFs. Nevertheless, sample
histograms are shown in figure 7. The distribution of the flight lengths (figure 7a) is
strongly skewed towards long lengths and exhibits a peak at L/d ≈ 5. However, this
peak is not well-defined due to the coarse resolution and its closeness to zero. The
distribution of the flight durations (figure 7b), on the other hand, is more symmetric
and exhibits a well-defined peak corresponding to the most probable flight duration,
defined as τp . This duration is about 4 s, or, in terms of the Stokes settling time, about
15 d/VS . Few flight durations exceed three times the most probable one.

Figure 8 displays the time evolution of the PDF of the velocity U , still for θ = 0.24,
at nominal times ranging from γ t = 103 to 106. The figure reveals that the PDFs
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Solid line: exponential distribution given by equation (5).

collapse rather well, implying that the velocity distribution is time-independent and
approximately exponential as in equation (5), at least for velocities less than 0.25 γ d .
It must be noted that the most probable flight length Lp and flight duration τp also
do not appear to vary significantly with time, remaining close to 5d and 15 d/VS ,
respectively.

The dependence of the velocity distribution on the Shields number has been ex-
plored for θ � 0.24. First, for all θ , the PDFs of the velocities do not vary signi-
ficantly with time as in figure 8 for θ =0.24. Secondly, as can be seen in figure 9,
the PDFs are also independent of θ , at first order. However, closer inspection reveals
that when θ increases from 0.15 to 0.24, there are slighly more small velocities and
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σW = 0.02γ d .

fewer high velocities, with the mean velocity decreasing from 0.10 γ d to 0.09 γ d . It
should also be noted that these results are only weakly sensitive to the cut-off at the
low-velocity end of the PDFs. In particular, increasing the cut-off from the lowest
measured velocity to twice this value increases the mean velocity by about 5% only,
for all θ .

The Shields-number dependence of the duration and length of the flights has also
been investigated. The most probable flight duration τp behaves like the velocity
distribution: it does not vary significantly with time, for any θ , and it is also
independent of θ , remaining close to 15 d/VS . The flight length on the other hand
increases with the shear rate, and is approximately given by Lp ≈ Upτp .

As discussed in § 2, the curvature of the channel is responsible for a slow recirculating
flow which induces a slow drift of the particles towards the inner wall of the channel.
A typical PDF of the transverse velocity component W is shown in figure 10 for the
highest Shields number studied, at the early stages of particle motion (γ t = 103). As
expected, this PDF exhibits a non-zero mean value, Wp = 0.007γ d = 0.07 Up , which
is in agreement with the numerical prediction of the radial bottom shear stress being
9% of the azimuthal component; the coefficient decreases for long times as the radial
slope increases, and eventually vanishes when the transverse shear stress and sloping
effects balance. The distribution of Wp is close to Gaussian, with standard deviation
σW ≈ 0.03 γ d .

From the velocity distributions, the fluctuating kinetic energy of the particles
contained in the random motion about the mean velocity, commonly referred to as
the granular temperature T = 〈(U − Up)2 + (W − Wp)2〉, can be obtained. With the
exponential distribution for U and the normal distribution for W , it is T = U 2

p +

σ 2
W ≈ 0.011(γ d)2, where the contribution of the transverse velocity fluctuations is

only 10%, i.e. the fluctuations are highly anisotropic. The scaling of the granular
temperature with (γ d)2 is a common result for dry granular flows (mainly from
numerical simulations) when the intersticial fluid is ignored (Campbell 1990). For
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such flows, the result T ∼ (γ d)2 can be inferred from dimensional analysis. However,
this does not necessarily follow for viscous flows, for which there are other velocity
scales than γ d .

In summary, the following main conclusions can be drawn from the above
observations. First, the velocity distributions decrease monotonically, in an approx-
imately exponential manner. This distribution, when normalized with the characteristic
velocity γ d , is independent of time and Shields number, with mean velocity
Up = 0.10 γ d . Second, the flight duration τp of the particles does not depend on
time for fixed θ , and does not vary significantly either as θ is varied. Thus, at least
for θ � 0.24, the mean velocity to within 20%, and the mean duration and length of
the flights to within 20%, are given by

Up

γ d
= 0.10,

τp

d/VS

= 15,
Lp

d
≈ Upτp

d
= 27 θ. (6)

3.3. Surface density of moving particles, Np

In addition to considering the motion of individual particles, our objective was to
determine the total number Np of moving particles per unit area. This number can
be determined by two differents methods. The first method is to count the number
of particles which move between two successive frames, with the same definition of
a ‘moving particle’, based on the spatial resolution, as in the Eulerian method of the
previous section. The second method is to compute Np from the number of particles
crossing a transverse line of unit length per unit time, i.e. from the particle flow rate
Q, with the relationship:

Np =
Q

Up

, where Up =

∫ ∞

0

U P (U ) dU. (7)

In this equation, the mean velocity Up on the bed surface is defined from the
probability density function P (U ) of the velocities, as determined in the previous
section.† Note that the mean velocity Up on the bed surface is different from the mean
velocity of the particles crossing a transverse line. Indeed, the probability P (U )dU

of finding a particle with velocity U ± δU/2 on the bed surface is different from the
probability P ′(U ) dU of measuring a velocity in the same range as a particle crosses
a transverse line, the two probability densities being related by P ′(U ) = (U/Up) P (U ).

The flow rate Q has been determined by counting the number of particles crossing
a transverse line 1 cm long in the centre of the channel, where the fluid velocity is
radially uniform. For high moving-particle concentrations, only the small fraction
of dyed particles were counted, whereas for low concentrations all particles were
considered. Using the mean particle velocity Up obtained in the previous section, the
number of moving particles can finally be defined from the measured particle flow
rate Q as

Np =
Q

Up

, with Up = 0.10 γ d. (8)

† The relationship (7), which is obvious when all particles have the same velocity, can be demon-
strated, when the velocities are distributed, by considering the number δNp of particles with velocity
between U and U +δU in a rectangle of length Uδt in the direction of the flow, and then integrating
over all the velocities.
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Figure 11. Temporal evolution of the surface density Npd2 of moving particles for θ = 0.15

(γ = 11 s−1). The symbols ∗ and × were determined using (8), and correspond to two different
runs.

Both methods for the determination of Np , the direct-counting method and
equation (8), were found to give close results, as discussed below. However, the
determination from the particle flow rate and equation (8) is more time efficient.

Figure 11 displays a typical temporal evolution of the dimensionless surface density
Npd2, which represents the number of moving particles on the area d2, for θ = 0.15.
Np was determined from equation (8), each point corresponding to the crossing of
a few tens of counted particles over a period spanning a few minutes. The two
symbols correspond to two different runs which were measured several weeks apart,
showing that the measurements are reproducible. In contrast with the particle velocity
which was shown to remain constant with time, it appears that the surface density
of moving particles decreases strongly over very long times, by more than one order
of magnitude, and then reaches a constant or saturated value Np,satd

2 ≈ 0.01. The
decrease lasts for tsat ≈ 7 hours ≈ 105 d/VS , and approximately follows the power law
Np ∼ t−α with α ≈ 0.60. Note that the saturation time tsat is much longer than any
hydrodynamic time scale, and is comparable with the time scale of the variation of
the bed thickness.

Figure 12 compares, for θ = 0.24, the two methods of determination of the surface
density: the direct counting of the moving particles in the field of view of the
camera, and the determination via the flow rate and equation (8). It appears that, as
mentioned above, both methods lead to close results. However, for θ = 0.15, the other
Shields number for which both methods were employed, the comparison displayed
a significant discrepancy, up to a factor of two. The explanation is probably that
the number of moving particles is not uniform over the bed. One cause for this is
that when a moving particle happens to be stopped by a little bump or trough, the
following particles may accumulate against it and form a packet. This ‘metastable
packet’ may then be swept away by the impact of an additional particle, and it then
disperses. This phenomena seems to be more pronounced for small particle flow rates.
The non-uniformity of the surface density also implies an intermittency of the flow
rate Q. Thus the estimation of Np or Q may be biased if the period of time over
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Figure 12. Time evolution of the surface density Npd2 of moving particles for θ = 0.24

(γ =18 s−1): ∗, direct counting of the moving particles within the field of view of the camera;
�, determined using equation (8) with Q and Up .
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Figure 13. Time evolution of the number Np of moving particles for Shields numbers
θ = 0.12, 0.15, 0.18 and 0.24.

which it is averaged is shorter than the characteristic time of the intermittency. From
this point of view, we believe that the particle flow rate measurements, for which
the averaging times ranged between one and ten minutes, are more reliable than the
surface density measurements, which were averaged over a few tens of seconds only.
The intermittency phenomena remains to be studied more precisely.

Figure 13 shows how the decrease of the surface density of moving particles changes
with the Shields number. For θ = 0.24, 0.18 and 0.15, it can be seen that the surface
density decreases to a non-zero saturated value Np,satd

2 within a finite saturation time
tsat . For the lowest Shields number, θ = 0.12, the saturated surface density is effectively
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zero: the last point shown in the figure corresponds to ten particles crossing the field
of view during two minutes; at time γ t ≈ 6 × 105 (not shown in the figure), there
were only two over an interval of ten minutes. By extrapolating to zero the saturated
particle flow rate, the minimum Shields number to obtain a non-zero saturated surface
density (and flow rate) was found to be θt,sat =0.12, as discussed in more detail in the
following section. As expected then, for θ in the range θt,0 < θ < θt,sat , the flow rate
and surface density were observed to decrease to zero, and the particle motion was
only transient.

The cause for the decrease of the number of moving particles is likely to be the
rearrangement of the ‘microstructure’ of the particles near the bed surface. This is
supported by the observation that some moving particles are seen to stop permanently,
trapped in a trough between fixed grains, as evidenced, for example, in figure 4 for
the lower particle. We were unable to demonstrate this rearrangement directly via
the measurement of the bed roughness with the ultrasonic probe (see figure 2), which
implies that the roughness changes occur on lengths smaller than the diameter of the
probe beam, i.e. smaller than six particle diameters. The trapping model presented
later, however, supports this type of bed surface evolution.

The rearrangement of the surface microstructure has an important macroscopic
effect: it increases the threshold for particle motion, from the initial value θt,0 = 0.04,
obtained for a settled bed after total resuspension, up to the saturated value
θt,sat = 0.12. This rise of the threshold Shields number corresponds to an ‘armouring’
of the bed. The saturation time tsat , defined as the time needed for the saturated
state to be reached, thus corresponds to an armouring time. The armouring process
is irreversible. Indeed, we have observed that after stopping the flow for a while (a
few minutes to a few hours) and starting it again, the threshold for particle motion is
higher than the initial one, as long as the saturated value is not reached. Moreover, the
particle flow rate does not exhibit any discontinuity: after the stop-restart sequence, it
immediately recovers the value it had before it was stopped. This remains true even if
the fluid flow is reversed. The saturated threshold is therefore likely to be independent
of the way the bed was initially prepared, and is expected to be representative of
some equilibrium state of the surface microstructure of the sheared bed. However,
this equilibrium state and the corresponding threshold θt,sat may depend on the shape
and on the dispersion of the size of the particles. This point will be re-addressed in
the final section in relation to previous threshold measurements.

3.4. Shields number dependence of the saturated flow rate

The dependence of the particle flow rate on the bottom shear stress has received much
attention in the literature due to its great practical importance. The semi-empirical
laws that have been proposed all assume, at least implicitly, that the bed has reached
an equilibrium state. In this section, we propose such a law for the viscous flow case.
As noted in the previous section with regard to the results from figure 13, the number
of moving particles, and thus the saturated flow rate Qsat =Np,satUp , increase with
Shields number beyond the threshold θt,sat . Figure 14 displays the experimental data
for the dimensionless flow rate Qsat/(VS/d

2) versus Shields number θ . These data are
shown together with the parabolic fit

Qsat

d2

VS

= 0.85 θ (θ − θt,sat ) with θt,sat = 0.12, (9)

which is the only one which leads to good agreement with the experimental data. The
saturated threshold θt,sat = 0.12 first introduced in the previous section was determined
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Figure 14. Saturated flow rate Qsat versus Shields number θ : �, experiments;
solid line, parabolic fit given by equation (9).

from this parabolic fit. The dependence of Np,sat on the Shields number can now be
obtained. Indeed, the particle flow rate Qsat given by (9) being the product of Up by
Np,sat , and Up =0.10 γ d =1.8 θ VS being linearly dependent on θ , implies that Np,sat

varies according to the following linear law:

Np,satd
2 = 0.47 (θ − θt,sat ) with θt,sat = 0.12. (10)

3.5. Summary of the experimental results

The main observations reported can be summarized as follows:
1. For Shields numbers θ smaller than the threshold θt,0 ≈ 0.04, particles do not

move. This threshold is expected to depend on the way the bed is prepared (here, by
sedimentation of the totally resuspended flow).

2. For θ > θt,0, some particles are set into motion. They experience flights whose
duration τp ≈ 15d/VS depends neither on time nor on the bottom shear stress. Their
mean velocity is Up/(γ d) ≈ 0.10; it does not depend on time, and depends only slightly
on the Shields number, decreasing by about 10% as the Shields number is doubled.

3. For θt,0 < θ < θt,sat , where θt,sat = 0.12, the number Np of moving particles per
unit area decreases and eventually vanishes. The measurement of subsidence of the
bed surface suggests this is due to the trapping of the moving particles in small
troughs between fixed particles, and a reorganization of the surface microstructure of
the bed (armouring).

4. For θ > θt,sat , the number Np still decreases with time, but it eventually reaches a
non-zero saturated value, such that Np,satd

2 = 0.47(θ − θt,sat ). The saturated flow rate,
Qsat =UpNp,sat , is a quadratic function (9) of the shear rate.

5. The threshold θt,sat is expected to correspond to an asymptotic state of the
surface microstructure of the bed, and is likely to be independent of the way the bed
is prepared although dependent on the particle characteristics. This asymptotic state
is reached after an armouring time tsat of order tsat ≈ 106/γ . This time is very large
compared to the hydrodynamic time scales 1/γ or d/VS .
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Figure 15. Sketch of a bed of particles sheared by a fluid flow.

4. Theoretical models
To account for our principal experimental observations, we propose two models

for the surface density of moving particles, Np: an erosion–deposition model and a
kinematic trapping model, the former to account for the saturated states, and the
latter to account for the slow decrease of the number of moving particles.

4.1. An erosion–deposition model

Let us consider a bed of particles sheared by a fluid flow (figure 15). The variation
of the number Np of moving particles per unit area is the result of two opposite
processes occurring at the bed surface: erosion and deposition. Let ṅe and ṅd be the
rates of erosion and deposition per unit area, respectively. The total variation rate of
Np , assuming spatial homogeneity, can then be written as

dNp

dt
= −ṅd + ṅe. (11)

The deposition rate ṅd can be modelled by considering that during one flight
duration τp , Np particles can be expected to stop per unit area. Moreover, since
gravity is responsible for the deposition, the flight duration can be assumed to be
proportional to the settling time d/VS . Hence, the deposition rate can be expressed as

ṅd =
Np

τp

, with τp = a
d

VS

. (12)

From the previously determined flight duration τp , the coefficient a can be taken as
constant and equal to 15, according to equation (6).

The erosion of a particle, on the other hand, depends on the hydrodynamic force
acting on it, i.e. it must involve the shear rate γ as the time scale. Moreover, erosion
is likely to depend weakly on the number of moving particles, at least when this
number is not too large. Thus, at first order, the erosion rate can be written as

ṅe = b
γ − γt

d2
= 18b (θ − θt )

VS

d3
. (13)

The coefficient b may depend weakly on the particle Reynolds number and on the
number of moving particles, but here it is taken as a constant for the sake of
simplicity. θt is the threshold for particle motion at time t , which depends on the
surface microstructure of the bed. In our experiments, it increases from θt,0 = 0.04,
when the flow is set up by resuspension, up to θt,sat = 0.12 when the asymptotic state
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is reached. The constant b can be determined from the flow rate measurements as
follows. Equation (11) has the steady-state (or saturated) solution ṅd = ṅe, which with
θt = θt,sat and equations (12) and (13) leads to

Np,satd
2 = 18ab(θ − θt,sat ). (14)

This equation predicts that the number of moving particles increases linearly with the
distance to the threshold θt,sat , in agreement with the experimental law (10). Using
the constants determined from the experiments, in particular a = 15 from (6) and
18ab = 0.47 from (10), yields b = 0.0017. The linearity of (14) supports the modelling
of the deposition and erosion rates based on the settling time and the shear rate.

Equation (11) should not only predict the saturated state, but also the preceding
transient states. Since the experiments have shown that the armouring time is much
greater than the hydrodynamic time scales, it can be considered that at any time the
bed is in a quasi-equilibrium state, for which erosion just compensates deposition. The
armouring itself might be imbedded in the threshold θt . Thus, the quasi-equilibrium
solution of ṅd = ṅe, with initial threshold θt = θt,0, should yield the initial number of
moving particles Np,0. This conjecture leads to Np,0d

2 = 18ab (θ − θt,0) and thus

Np,0

Np,sat

=
θ − θt,0

θ − θt,sat

. (15)

For θ =0.15, this equation predicts Np,0/Np,sat = 3.7 whereas the direct measure-
ments yield 12. For θ = 0.24, it predicts Np,0/Np,sat = 2.5 and the measurements 7.
Thus, (15) successfully predicts Np,0 to be higher than Np,sat , but it underestimates
Np,0 by a factor of about three. Considering the crudeness of the hypotheses (in
particular b = constant), this discrepancy is not really surprising. Most importantly,
this prediction supports the idea that the temporal evolution of the number of moving
particles may be accounted for through the evolution of the threshold θt for particle
motion. Following this idea, the erosion–deposition model could be amended by
introducing a time-dependence of the threshold shear rate γt . However, a detailed
description of the surface microstructure of the bed is still lacking for a convincing
modelling of γt to be proposed. (As explained previously, the resolution of our
ultrasonic probe was not high enough for such a description to be gained.) Instead,
another way was preferred for accounting for this decrease, which is developed in the
next section.

4.2. A kinematic trapping model

To account for the slow decrease of the surface density of the moving particles, and
following the observation that this decrease is related to particles stopping in little
crevices at the bed surface, we consider here explicitly the surface microstructure of
the bed by modelling it as a flat surface with troughs in which moving particles may
be trapped.

Consider a horizontal surface on which troughs, of typical size d , are randomly
distributed (figure 16). The initial number of troughs per unit area is Nt,0 and the
mean distance between the uniformly distributed troughs is 1/

√
Nt,0. On this surface,

particles are assumed to move uniformly with velocity Up in the x-direction and may
fall into the troughs. Initially the number of particles per unit area is Np,0 and the
mean distance between the particles is 1/

√
Np,0. A particle passing over a trough has

the probability p of being trapped (the physical significance of this probability will
appear below). A trough can trap one particle at most. How then does the number
of moving particles decrease?
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Figure 16. Sketch of the bed of particles for the trapping model. The numbers of moving
particles and troughs per unit area are Np and Nt , respectively.

Introducing the particle diameter d as the length scale, the above problem depends
on the following three dimensionless parameters: (i) the fraction of the surface
occupied by the particles at the initial time, Np,0d

2, (ii) the ratio of the initial numbers
of particles and troughs,

r =
Np,0

Nt,0

, (16)

and (iii) the trapping probability, p.
At time t , the number of troughs is Nt (t) = Nt,0 − Np,0 + Np(t), and a characteristic

distance between troughs is 1/
√

Nt (t). During time interval dt , a particle travels over
the distance Up dt , and sweeps the area Up dt d; it meets NtUp dt d troughs on average
if the troughs remain uniformly distributed. Thus, during the time interval dt , the
probability for a particle to be trapped is dt/τ (t), where τ (t) = 1/(pNtUpd) is the
characteristic trapping time at time t . The mean number of trapped particles per unit
area during dt is then −dNp = Np dt/τ , whence the differential equation

dNp

dt
= −Np

τ
= −p Np Up d (Nt,0 − Np,0 + Np). (17)

Introducing the characteristic trapping time τ0 = 1/(pNt,0Upd) at the initial time,
this equation becomes, for the relative number of moving particles N∗

p = Np/Np,0 as
a function of the dimensionless time t∗ = t/τ0,

dN ∗
p

dt∗ = −N ∗
p (1 − r + r N∗

p). (18)

The solution of the above equation only depends on the initial ratio of particles to
troughs, r . For r = 1, the solution is the algebraic decrease

N∗
p(t∗) =

1

1 + t∗ . (19)
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Figure 17. Temporal evolution of the number of moving particles Np/Np,0 according to the
model (17) for r =0.9, 1, 1.1.

For r �= 1, the solution is

N∗
p(t∗) =

(1 − r)e−(1−r)t∗

1 − r e−(1−r)t∗ . (20)

For r < 1 (i.e. fewer particles than troughs), N ∗
p tends to zero for large t∗. For r >1

(i.e. more particles than troughs), N∗
p tends to 1 − 1/r as it should.

Figure 17 displays typical solutions of (19) (for r =1) and (20) (for r < 1 and
r > 1). It can be seen that these solutions are at least in qualitative agreement with
the experiments: the existence of a saturation threshold, and decay over several
orders of magnitude of τ0. Finally, the particle flow rate at time t can be deduced as
Q =Up Np(t) = Up Np,0 N∗

p(t).
We can now relate the parameters of the model to those of the experiments to

obtain quantitative comparisons. We make the following four assumptions:
1. The initial number of troughs Nt,0 depends only on the way the bed is prepared

(in the experiments reported above, by sedimentation of the totally resuspended flow).
2. The uniform velocity Up of the model is taken as the mean velocity measured

in the experiments, Up = 0.1 γ d .
3. The ratio r =Np,0/Nt,0 and the initial number of troughs Nt,0 can be related

to the Shields number as follows. Consider the number Np,sat of moving particles at
saturation. On the one hand, the experiments show that for θ < θt,sat this number is
zero, and that for θ > θt,sat it is Np,satd

2 = 0.47(θ −θt,sat ). On the other hand, the model
predicts that for r < 1, Np,sat is zero, and for r > 1, Np,sat = Np,0 − Nt,0 = Nt,0(r − 1).
Equating the two expressions for Np,sat gives

Nt,0d
2(r − 1) = 0.47(θ − θt,sat ).

Extrapolating this relation down to the threshold θt,0, for which r is zero, we obtain
Nt,0d

2 = 0.47 (θt,sat − θt,0). With θt,0 = 0.04 and θt,sat = 0.12, we finally obtain Nt,0 and
the relation between r and the Shields number:

Nt,0d
2 = 0.038, (21)
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Figure 18. Temporal evolution of the surface density of the moving particles Np according
to the model (18) with the correlations (22) and (23), for θ = 0.12 . . . 0.24.

and

r =
θ − θt,0

θt,sat − θt,0

. (22)

4. The trapping probability p is related to the time spent by a particle above a
trough. Indeed, in order to be trapped, the particle has to force some fluid out of
the trough. Thus, the trapping condition is that the time spent by the particle above
the trough be greater than the drainage time. The order of magnitude of the first time is
d/Up ∼ 1/γ , and the order of the latter is the settling time d/VS . The ratio of these two
times is equal to, dimensionally, the inverse Shields number. The simplest expression
of the trapping probability is therefore p ∼ 1/θ . The constant coefficient in this law can
be determined by considering that at the threshold for particle motion θt,0, particles
easily fall in troughs because their velocity is small, so that the trapping probability
is the highest and equal to unity. Finally, this probability can be written as

p =
θt,0

θ
with θt,0 = 0.04. (23)

Equations (21), (22) and (23) relate the three parameters of the model to those of
the experiments. The trapping time τ0 can now be estimated as

τ0 =
1

p Nt,0 Up d
≈ 370

d

VS

≈ 100 s. (24)

Figure 18 diplays the temporal evolution of the number of moving particles
Np(t)d2 = r Nt,0d

2 N∗
p(t/τ0), with N∗

p(t/τ0), Nt,0d
2, r and τ0 given by (20), (21), (22)

and (24), respectively. This figure shows that the trapping model exhibits temporal
evolution of the number of moving particles similar to the experimental evolution
shown in figure 13. In particular, the model yields saturation times tsat ≈ 103d/VS ,
much greater that the hydrodynamic time scales d/VS and 1/γ . However, this
saturation time remains smaller than the observed time by a factor 20 to 100.

The above trapping model, through the modelling of surface phenomena, predicts
the right trends, specifically the correct sense of the temporal evolution of the number
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of moving particles, the correct dependence of the saturated state as a function of the
Shields number, and saturation times much higher than the hydrodynamic time scales
(although still too small). Of course the model might easily be amended in order
to reproduce greater saturation times. This could be done, for example, by refining
the trapping probability, or by taking into account erosion, or by introducing more
dynamic rules for the filling of the troughs. However, without additional information
from experiments, such modifications would be unjustified, and are merely as ad hoc
hypotheses. The main problem at this point is still the lack of experiments offering a
description of the surface microstructure of sheared granular beds.

5. Summary and discussion
As mentioned in the introduction, improvements in the modelling of the transport

of particles on a bed by a shear flow require a detailed knowledge of the motion of
individual particles within the moving layer. This also raises the question of properly
assessing the slow temporal evolution associated with bed armouring, and con-
sequently the way by which stationary transport is achieved. Ways that can be envi-
sioned are bed vibration or mechanical compaction; a more practically relevant way,
however, is compaction by the fluid shear itself, by which the state of compaction is
linked to the strength of the shear.

Of particular interest are the surface density of the moving particles, their velocity,
and the length and duration of the saltation jumps, or flights, of the particles as they
lift off the bed. We determined such quantities for viscous flows from measurements in
an annular channel for an initially loosely packed bed, and give not only their mean
values but also their distributions, in both the transient and the saturated states, and
the associated time scales. In order to help understand the experimental results, two
models have been proposed, one for the stationary erosion and deposition processes,
and the other for the transient evolution.

The first evidence of the slow temporal evolution is given by the decrease of the bed
surface height as measured by ultrasonic probes. For a relatively low Shields number
of 0.17, the bed thickness decreases strongly over about two days, and then appears to
reach a constant value. The transient time scale is several orders of magnitude larger
than the two hydrodynamic time scales, i.e. the inverse shear rate and the settling
time. The reason for the observed bed-thickness decrease can be attributed to the
rearrangement of the bed microstructure, predominantly near the bed surface. The
rearrangement in turn is responsible for ‘bed armouring’ and affects the threshold for
particle motion and the transport rate. The threshold increases from θt,0 = 0.04, which
corresponds to a settled bed after total resuspension, to θt,sat =0.12 when the bed has
reached its saturated state. This value is the range of those found by White (1970),
Mantz (1978) and Yalin & Karahan (1979).† The saturated threshold therefore seems
to be independent of the way the bed is prepared. Although bed armouring is a
well-known phenomenon (Chin et al. 1994; Raudkivi 1998), it is believed to occur
with non-uniform sediment size only. Our experiments show that it can also occur
with nearly uniform particle size.

For the explored Shields number range (θ < 0.24), particles were observed to mainly
roll and slide on the underlying bed, with small saltation flights in between which they
stop for a while in little crevices. No clear distinction was found possible between the

† For θ = 0.12, the particle Reynolds number (4) is equal to 0.15, which corresponds to a particle

Reynolds number based on the friction velocity equal to
√

0.15 = 0.39.
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crawling (rolling and sliding) and saltating motions; due to the geometrical disorder
of the bed, the moving particles easily lift off as they leave a local protrusion, and
fly distances of a few particle diameters. The most probable flight length, L, is
independant of time but increases with Shields number: it is about one diameter
when close to threshold Shields numbers, and up to five diameters at four times
this threshold. These flights can be attributed to the fact that, for viscous flow, the
advection time of the particle, i.e. the time needed to travel over one diameter, is
shorter than the drainage time needed for the falling particle to force out the fluid
below it. The flight durations were also measured, revealing distributions with well-
defined peaks at about 15 times the settling time d/VS . These flight durations were
found to not vary significantly with time and shear rate. Although only one system of
fluid and particles has been used in our experiments, this result can be expected to be
more general, since the underlying idea − also used in the erosion–deposition model −
is that particle deposition is controlled mainly by gravity. The lift force may also
be involved in the flight duration, but, in our study, this force is probably negligible
compared to the apparent weight of the particle: King & Leighton (1997) showed
that for a particle rolling and sliding on a plane wall, the shear stress needed to lift
up the particle corresponds to Shields numbers about 10, much higher than ours.

The lift-off is likely to be due to the geometrical disorder of the bed surface, each
local protrusion playing the role of a little ‘ramp’, and it cannot be attributed to elastic
rebounds. Indeed, it has been shown that even if a solid particle falling in a liquid
may rebound on a solid surface, the condition for a non-zero coefficient of rebound
is that the Stokes number of the particle, which measures the ratio of particle inertia
and viscous forces, must be greater than 20 (Gondret et al. 1999). In our experiments,
this number was at least one order of magnitude lower, so that particles cannot
rebound. Particles were also observed to have significant rotation, and this rotation
probably has a significant effect on the motion. Deeper insight into this question
could be gained from experiments on a single moving particle on a fixed bed, as done
by Francis (1973), and from numerical investigation of the motion of a particle near
a rough bed, including particle rotation (existing numerical simulations of particle
trajectories, such as that performed by Sekine & Kikkawa (1992), ignore rotation).
Finally, it can be noted that the flight lengths found in this study are smaller than
those found in turbulent water flows, i.e. for much higher particle Reynolds numbers:
Fernandez Luque & van Beek (1976) found L/d ≈ 16, which was constant in the
explored Shields number range. This disagrees with the experiments reported in
Sekine & Kikkawa (1992), which show L/d increasing strongly with Shields number
from a few tens up to three hundred. Note that the numerical calculations of Sekine &
Kikkawa (1992) reproduce these long jumps using a coefficient of rebound of 0.65,
which, considering Gondret et al. (1999), appears very high for particles with diameter
less than one millimetre.

Coming back to our results, the mean particle velocity, Up , was found to be
independent of the transient evolution, i.e. of the state of bed compaction, and equal
to 0.10 γ d , i.e. proportional to the shear rate. The numerical coefficient decreases
only slighly, by about 10%, when doubling the shear rate. Time series of particle
velocities exhibit peaks at about four times this mean velocity, which correspond
to the longer flight lengths. The velocity distributions, moreover, decay monotically,
close to exponential, with many slow and few fast velocities which correspond to short
and long flight lengths, respectively. Again, from these distributions, no distinction
was found possible between crawling and saltating particles.
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The proportionality of Up to the shear rate, i.e. to the shear stress, contrasts with the
viscous resuspension theory by Leighton & Acrivos (1986), which predicts a quadratic
dependence. It also contrasts with the experimental results by Fernandez Luque &
van Beek (1976) for turbulent flows on erodible beds. They found Up =11.6 (u∗ −
0.7u∗

t ), where u∗ and u∗
t are the friction velocity and the threshold friction velocity,

respectively, i.e. that the particle velocity is proportional to the square root of the
shear stress.

In addition to particle velocities, the surface density of moving particles, Np , was
also investigated. We found that, contrary to the particle velocities, it decreases slowly
with time by one order of magnitude, over the same long time scales as the bed
thickness. It can thus be concluded that bed armouring due to fluid shear affects
the bed thickness, the threshold for particle motion and the surface density, over the
same time scales.

At saturation, the surface density Np,sat of the moving particles was found to
increase linearly with the distance to the threshold, Np,satd

2 = 0.47(θ − θt,sat ). This
linear dependence is in agreement with several turbulent-flow studies, although our
coefficient is lower. In the experiments by Fernandez Luque & van Beek (1976),
the surface density was determined from visual observation, and found to be Npd2 =
1.8(θ − θt ) for θ − θt < 0.1. In numerical studies, the linear law for Np arises as a
consequence of Bagnold’s hypothesis, according to which the thickness of the moving
layer corresponds to the fluid shear stress at the bed reduced to θt (Bagnold 1956).†
In particular, Sekine & Kikkawa (1992) found Npd2 = 2.4(θ − θt ). From an heuristic
model for ripple formation, Andersen (2001) also found such a linear law, with the
coefficient equal to 2.9.

As a consequence of the laws for the surface density and particle velocity, the
saturated flow rate Qsat = Np,satUp is a quadratic function of the Shields number,
Qsatd

2/VS =0.85 θ (θ − θt,sat ). This result is different from the predictions of the two
available models for viscous flow, those of Bagnold (1956) and Leighton & Acrivos
(1986). (Less surprisingly, this result is also different from the classical semi-empirical
laws which all predict dimensionless flow rates close to (θ − θt )

3/2, (see Wiberg &
Smith 1989) among others). Although these two viscous-flow models are significantly
different – in particular Leighton & Acrivos (1986) ignores particle inertia – both
consider that the vertical profiles of velocity and concentration correspond to an
equilibrium between settling and a dispersive effect due to particle interactions. Both
models predict that the particle flow rate scales as the shear rate to the power three,
whereas our results show a quadratic dependence. Basically, the cubic law arises
because the thickness of the moving layer increases linearly with the shear rate, so
that the mean velocity scales as the square of the shear rate, not linearly as in our
experiments.

In order to better understand the underlying mechanisms governing the experi-
mental observations, two models were developed, a ‘dynamic’ one and a ‘kinematic’

† However, a different power law, with an exponent of 3/2, was obtained by van Rijn (1984).
From his particle-velocity calculations combined with the analysis of many flow rate measurements,
one can deduce from his equations (14) and (22)

Npd2 = (0.068/D0.3
∗ ) [(θ − θt/θt )]

1.5,

where D∗ = d ((ρp/ρf − 1)g/(µ/ρf )2)1/3 is a dimensionless particle diameter.
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one. The dynamic model aims at understanding the linear relationship between the
saturated surface density of moving particles and the Shields number. Based on the
mass conservation equation (11) of the moving particles, it requires the modelling of
the deposition and erosion rates. The basic assumption for the deposition rate ṅd is
that its time scale is governed by gravity and not by the shear rate, so that ṅd can be
taken to be equal to Np/τp , where τp is the characteristic flight duration evaluated by
the experiments to be 15 times the settling time d/VS . The erosion rate, on the other
hand, was assumed to be dependent on the hydrodynamic force, i.e. proportional to
the shear rate or more precisely to (γ − γt )/d

2 at the dominant order, where γt is a
threshold shear rate. At equilibrium (equal deposition and erosion rates), this model
predicts that the saturated surface density Np,sat (which corresponds to γt = γt,sat ) is
proportional to θ − θt,sat , in agreement with the experiments. This confirms that the
deposition and erosion rates are essentially controlled by the settling time and shear
rate, respectively.

The above model should also yield the slow decay of the number of moving
particles, if the slow increase of the shear-rate threshold is taken into account. We
have shown that this idea does not lead to close agreement with the experiments, in all
likelihood because of the first-order shear-rate dependence. A higher-order modelling
has not been attempted as the experimental data set does not allow it.

Instead, since the observed slow evolution of the bed thickness, threshold shear rate
and number of moving particles was attributed to the bed armouring, it was modelled
at first order as a surface phenomenon through a trapping model. This has been done
by considering the bed as a flat surface with troughs in which the moving particles
may be trapped, which is consistent with the observation that particles may stop in
little crevices. Apart from the particle velocity and diameter which define the time and
length scales, this kinematic model (which ignores explicit consideration of the fluid
flow) involves three additional parameters: the initial numbers of troughs and moving
particles, and a trapping probability for a particle to actually be held in a trough
when passing over it. These parameters have been set in order to fit the measured
saturated flow rates, and not the transient stages. The resulting time variations of the
particle flow rate predicted by this model qualitatively reproduce those observed in the
experiments. In particular, the model predicts saturation times several hundred times
higher than the hydrodynamic time scales. However, it still underestimates the initial
flow rates by a factor 3 to 5, and also underestimates the saturation times by a factor
20 to 100. The model might easily be amended in order to reduce this gap, in particular
by introducing erosion or refining the trapping probability. However, implementing
such refinements would only improve the surface model, while still neglecting what
happens below the surface, which is likely to correspond to corrections of the same
order. More experimental work is needed first in order gain a better knowledge of
the surface and sub-surface structures of the bed at the scale of one particle diameter,
and its evolution with time.

Finally, it must be noted that the number of moving particles displayed an
intermittent character, both in space and time, which is responsible for the major
part of the scatter of our measurements. This probably also occurs for higher particle
Reynolds number in water flows, and does not seem to have been considered in
previous studies. A precise study of this intermittency remains to be done.

We thank E. J. Hinch and F. Risso for valuable ideas and suggestions, as well as
G. Imbert, I. Altuna Urquia and E. Larrieu for their help in the experiments.
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